Abstract
Over the last year, SARS-CoV-2 caused the infection of more than 80 million people and about 1.8 million deaths. Since the emergence of the first cases in China, this virus has been the focal point of the scientific community and represented the main subject of a large number of research publications. It has been observed that the symptomatology is broad, varying from asymptomatic/mild manifestations to more severe stages of illness, in some cases leading to multi-organ failure and death. Although WHO announced PHEIC since January 30, and invited the researchers to quickly find solutions for diagnosis, monitoring, and treatment, there are currently no COVID-19 specific therapeutic drugs or vaccines clinically approved. This led to losses on multiple levels, such as: high number of deaths, health/financial crisis, job loss, school closures, etc. For these reasons, there is an urgent need to properly understand all aspects regarding this virus in order to successfully develop strategies to manage and stop this pandemic. Hence, this paper analysis the current knowledge and provides a comprehensive overview on this novel coronavirus.
License
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Article Type: Review Article
ELECTRON J GEN MED, Volume 18, Issue 3, June 2021, Article No: em286
https://doi.org/10.29333/ejgm/9765
Publication date: 07 Mar 2021
Article Views: 2332
Article Downloads: 1724
Open Access References How to cite this articleReferences
- Tortorici MA, Veesler D. Structural insights into coronavirus entry. In: Advances in Virus Research [Internet]. Elsevier; 2019. p. 93-116. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0065352719300284
- Wu D, Wu T, Liu Q, Yang Z. The SARS-CoV-2 outbreak: what we know. Int J Infect Dis. 2020;94:44-8. https://doi.org/10.1016/j.ijid.2020.03.004 PMid:32171952 PMCid: PMC7102543
- Chang L, Yan Y, Wang L. Coronavirus Disease 2019: coronaviruses and blood safety. Transfus Med Rev. 2020;S0887796320300146. https://doi.org/10.1016/j.tmrv.2020.02.003 PMid:32107119 PMCid:PMC7135848
- Shen M, Zhou Y, Ye J, Abdullah AL-maskri AA, Kang Y, Zeng S, et al. Recent advances and perspectives of nucleic acid detection for coronavirus. J Pharm Anal. 2020;10(2):97-101. https://doi.org/10.1016/j.jpha.2020.02.010 PMid:32292623 PMCid:PMC7102540
- Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal. 2020;10(2):102-8. https://doi.org/10.1016/j.jpha.2020.03.001 PMid:32282863 PMCid:PMC7104082
- Cui J, Li F, Shi Z-L. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17(3):181-92. https://doi.org/10.1038/s41579-018-0118-9 PMid:30531947 PMCid:PMC7097006
- Yang Y, Peng F, Wang R, Guan K, Jiang T, Xu G, et al. The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. J Autoimmun. 2020;109:102434. https://doi.org/10.1016/j.jaut.2020.102434 PMid:32143990 PMCid:PMC7126544
- Centers for Disease Control and Prevention (CDC). Revised U.S. surveillance case definition for severe acute respiratory syndrome (SARS) and update on SARS cases - United States and worldwide, December 2003. MMWR Morb Mortal Wkly Rep. 2003;52(49):1202-6.
- Enjuanes L, Zuñiga S, Castaño-Rodriguez C, Gutierrez-Alvarez J, Canton J, Sola I. Chapter Eight - Molecular basis of coronavirus virulence and vaccine development. In: Ziebuhr J, editor. Advances in Virus Research [Internet]. Academic Press; 2016. p. 245-86. https://doi.org/10.1016/bs.aivir.2016.08.003 PMid:27712626 PMCid:PMC7112271
- Azhar EI, Hui DSC, Memish ZA, Drosten C, Zumla A. The Middle East Respiratory Syndrome (MERS). Infect Dis Clin North Am. 2019;33(4):891-905. https://doi.org/10.1016/j.idc.2019.08.001 PMid:31668197 PMCid:PMC7127753
- Masters PS. Coronavirus genomic RNA packaging. Virology. 2019;537:198-207. https://doi.org/10.1016/j.virol.2019.08.031 PMid:31505321 PMCid:PMC7112113
- Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet. 2020;395(10224):565-74. https://doi.org/10.1016/S0140-6736(20)30251-8
- Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet. 2020;395(10223):497-506. https://doi.org/10.1016/S0140-6736(20)30183-5
- Wang R, Zhang X, Irwin DM, Shen Y. Emergence of SARS-like coronavirus poses new challenge in China. J Infect. 2020;80(3):350-71. https://doi.org/10.1016/j.jinf.2020.01.017 PMCid:PMC7126811
- Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270-3. https://doi.org/10.1038/s41586-020-2012-7 PMid:32015507 PMCid:PMC7095418
- Bauch CT, Lloyd-Smith JO, Coffee MP, Galvani AP. Dynamically modeling SARS and other newly emerging respiratory illnesses: past, present, and future. Epidemiology. 2005;16(6):791-801. https://doi.org/10.1097/01.ede.0000181633.80269.4c PMid:16222170
- Wallinga, Jacco, Teunis, Peter. Different epidemic curves for Severe Acute Respiratory Syndrome reveal similar impacts of control measures. Am J Epidemiol. 2004;160(6):509-16. https://doi.org/10.1093/aje/kwh255 PMid:15353409 PMCid:PMC7110200
- Park J-E, Jung S, Kim A, Park J-E. MERS transmission and risk factors: a systematic review. BMC Public Health. 2018;18(1):574. https://doi.org/10.1186/s12889-018-5484-8 PMid:29716568 PMCid:PMC5930778
- Kucharski AJ, Althaus CL. The role of superspreading in Middle East respiratory syndrome coronavirus (MERS-CoV) transmission. Eurosurveillance. 2015;20(25):14-8. https://doi.org/10.2807/1560-7917.ES2015.20.25.21167
- Biggerstaff M, Cauchemez S, Reed C, Gambhir M, Finelli L. Estimates of the reproduction number for seasonal, pandemic, and zoonotic influenza: a systematic review of the literature. BMC Infect Dis. 2014;14(480):1-20. https://doi.org/10.1186/1471-2334-14-480 PMid:25186370 PMCid:PMC4169819
- Read JM, Bridgen JR, Cummings DA, Ho A, Jewell CP. Novel coronavirus 2019-nCoV: early estimation of epidemiological parameters and epidemic predictions. medRxiv. 2020;2020.01.23.20018549. https://doi.org/10.1101/2020.01.23.20018549
- Linka K, Peirlinck M, Kuhl E. The reproduction number of COVID-19 and its correlation with public health interventions. medRxiv. 2020;2020.05.01.20088047. https://doi.org/10.1101/2020.05.01.20088047
- Gralinski EL, Menachery DV. Return of the coronavirus: 2019-nCoV. Viruses. 2020;12(135):1-8. https://doi.org/10.3390/v12020135 PMid:31991541 PMCid:PMC7077245
- Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-33. https://doi.org/10.1056/NEJMoa2001017 PMid:31978945 PMCid:PMC7092803
- Li C, Yang Y, Ren L. Genetic evolution analysis of 2019 novel coronavirus and coronavirus from other species. Infect Genet Evol. 2020;82:104285. https://doi.org/10.1016/j.meegid.2020.104285 PMid:32169673 PMCid:PMC7270525
- Forster P, Forster L, Renfrew C, Forster M. Phylogenetic network analysis of SARS-CoV-2 genomes. Proc Natl Acad Sci U S A. 2020;117(17):9241-3. https://doi.org/10.1073/pnas.2004999117 PMid:32269081 PMCid:PMC7196762
- Wu F, Zhao S, Yu B, Chen Y-M, Wang W, Song Z-G, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265-9. https://doi.org/10.1038/s41586-020-2008-3 PMid:32015508 PMCid:PMC7094943
- Chan JF-W, Kok K-H, Zhu Z, Chu H, To KK-W, Yuan S, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect. 2020;9(1):221-36. https://doi.org/10.1080/22221751.2020.1719902 PMid:31987001 PMCid:PMC7067204
- Paraskevis D, Kostaki EG, Magiorkinis G, Panayiotakopoulos G, Sourvinos G, Tsiodras S. Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event. Infect Genet Evol. 2020;79:104212. https://doi.org/10.1016/j.meegid.2020.104212 PMid:32004758 PMCid:PMC7106301
- Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, et al. Coronavirus infections and immune responses. J Med Virol. 2020;92(4):424-32. https://doi.org/10.1002/jmv.25685 PMid:31981224 PMCid:PMC7166547
- Han Q, Lin Q, Jin S, You L. Coronavirus 2019-nCoV: a brief perspective from the front line. J Infect. 2020;80(4):373-7. https://doi.org/10.1016/j.jinf.2020.02.010 PMid:32109444 PMCid:PMC7102581
- Kim Y, Jedrzejczak R, Maltseva NI, Endres M, Godzik A, Michalska K, et al. Crystal structure of Nsp15 endoribonuclease NendoU from SARS-CoV-2. bioRxiv. 2020;2020.03.02.968388. https://doi.org/10.1101/2020.03.02.968388
- Li Y-C, Bai W-Z, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. 2020;92(6):552-5. https://doi.org/10.1002/jmv.25728 PMid:32104915 PMCid: PMC7228394
- Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, O’Meara MJ, et al. A SARS-CoV-2-human protein-protein interaction map reveals drug targets and potential drug-repurposing. Nature. 2020;583:459-68. https://doi.org/10.1038/s41586-020-2286-9 PMid:32353859 PMCid: PMC7431030
- Vellingiri B, Jayaramayya K, Iyer M, Narayanasamy A, Govindasamy V, Giridharan B, et al. COVID-19: A promising cure for the global panic. Sci Total Environ. 2020;725:138277. https://doi.org/10.1016/j.scitotenv.2020.138277 PMid:32278175 PMCid:PMC7128376
- Luk HKH, Li X, Fung J, Lau SKP, Woo PCY. Molecular epidemiology, evolution and phylogeny of SARS coronavirus. Infect Genet Evol. 2019;71:21-30. https://doi.org/10.1016/j.meegid.2019.03.001 PMid:30844511 PMCid:PMC7106202
- Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020;11(1):1620. https://doi.org/10.1038/s41467-020-15562-9 PMid:32221306 PMCid:PMC7100515
- Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181(2):281-292.e6. https://doi.org/10.1016/j.cell.2020.02.058 PMid:32155444 PMCid:PMC7102599
- Xia S, Zhu Y, Liu M, Lan Q, Xu W, Wu Y, et al. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cell Mol Immunol. 2020;17:765-7. https://doi.org/10.1038/s41423-020-0374-2 PMid:32047258 PMCid:PMC7075278
- Ou X, Zheng W, Shan Y, Mu Z, Dominguez SR, Holmes KV, et al. Identification of the fusion peptide-containing region in betacoronavirus spike glycoproteins. Perlman S, editor. J Virol. 2016;90(12):5586-600. https://doi.org/10.1128/JVI.00015-16 PMid:27030273 PMCid:PMC4886789
- Millet JK, Whittaker GR. Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proc Natl Acad Sci U S A. 2014;111(42):15214. https://doi.org/10.1073/pnas.1407087111 PMid:25288733 PMCid:PMC4210292
- Bertram S, Dijkman R, Habjan M, Heurich A, Gierer S, Glowacka I, et al. TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium. J Virol. 2013;87(11):6150-60. https://doi.org/10.1128/JVI.03372-12 PMid:23536651 PMCid:PMC3648130
- Bertram S, Glowacka I, Müller MA, Lavender H, Gnirss K, Nehlmeier I, et al. Cleavage and activation of the Severe Acute Respiratory Syndrome coronavirus spike protein by human airway trypsin-like protease. J Virol. 2011;85(24):13363-72. https://doi.org/10.1128/JVI.05300-11 PMid:21994442 PMCid:PMC3233180
- Gierer S, Bertram S, Kaup F, Wrensch F, Heurich A, Krämer-Kühl A, et al. The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies. J Virol. 2013;87(10):5502-11. https://doi.org/10.1128/JVI.00128-13 PMid:23468491 PMCid:PMC3648152
- Qian Z, Dominguez SR, Holmes KV. Role of the spike glycoprotein of human Middle East Respiratory Syndrome coronavirus (MERS-CoV) in virus entry and syncytia formation. PloS One. 2013;8(10):e76469. https://doi.org/10.1371/journal.pone.0076469 PMid:24098509 PMCid: PMC3789674
- Shirato K, Kawase M, Matsuyama S. Middle East Respiratory Syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2. J Virol. 2013;87(23):12552-61. https://doi.org/10.1128/JVI.01890-13 PMid:24027332 PMCid:PMC3838146
- Shirogane Y, Takeda M, Iwasaki M, Ishiguro N, Takeuchi H, Nakatsu Y, et al. Efficient multiplication of human metapneumovirus in vero cells expressing the transmembrane serine protease TMPRSS2. J Virol. 2008;82(17):8942. https://doi.org/10.1128/JVI.00676-08 PMid:18562527 PMCid:PMC2519639
- Gupta MK, Vemula S, Donde R, Gouda G, Behera L, Vadde R. In-silico approaches to detect inhibitors of the human severe acute respiratory syndrome coronavirus envelope protein ion channel. J Biomol Struct Dyn. 2020;1-11. https://doi.org/10.1080/07391102.2020.1751300 PMCid:PMC7171389
- Bianchi M, Benvenuto D, Giovanetti M, Angeletti S, Ciccozzi M, Pascarella S. SARS-CoV-2 envelope and membrane proteins: differences from closely related proteins linked to cross-species transmission? BioMed Res Int. 2020;2020(Article ID 4389089):1-6. https://doi.org/10.1155/2020/4389089 PMid:32596311 PMCid:PMC7261327
- DeDiego ML, Álvarez E, Almazán F, Rejas MT, Lamirande E, Roberts A, et al. A Severe Acute Respiratory Syndrome coronavirus that lacks the E gene is attenuated in vitro and in vivo. J Virol. 2007;81(4):1701-13. https://doi.org/10.1128/JVI.01467-06 PMid:17108030 PMCid:PMC1797558
- Nieto-Torres JL, DeDiego ML, Verdiá-Báguena C, Jimenez-Guardeño JM, Regla-Nava JA, Fernandez-Delgado R, et al. Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis. PLoS Pathog. 2014;10(5):e1004077-e1004077. https://doi.org/10.1371/journal.ppat.1004077 PMid:24788150 PMCid:PMC4006877
- Fang X, Gao J, Zheng H, Li B, Kong L, Zhang Y, et al. The membrane protein of SARS-CoV suppresses NF-kB activation. J Med Virol. 2007;79(10):1431-9. https://doi.org/10.1002/jmv.20953 PMid:17705188 PMCid: PMC7166727
- Mousavizadeh L, Ghasemi S. Genotype and phenotype of COVID-19: their roles in pathogenesis. J Microbiol Immunol Infect. 2020. https://doi.org/10.1016/j.jmii.2020.03.022 PMid:32265180 PMCid:PMC7138183
- Surjit M, Lal SK. The SARS-CoV nucleocapsid protein: a protein with multifarious activities. Infect Genet Evol J Mol Epidemiol Evol Genet Infect Dis. 2008;8(4):397-405. https://doi.org/10.1016/j.meegid.2007.07.004 PMid:17881296 PMCid:PMC7106238
- Chang C, Hou M-H, Chang C-F, Hsiao C-D, Huang T. The SARS coronavirus nucleocapsid protein - Forms and functions. Antiviral Res. 2014;103:39-50. https://doi.org/10.1016/j.antiviral.2013.12.009 PMid:24418573 PMCid: PMC7113676
- Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe. 2020;27(3):325-8. https://doi.org/10.1016/j.chom.2020.02.001 PMid:32035028 PMCid:PMC7154514
- Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020;581(7807):215-20. https://doi.org/10.1038/s41586-020-2180-5 PMid:32225176
- Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260-3. https://doi.org/10.1126/science.abb2507 PMid:32075877 PMCid:PMC7164637
- Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367(6485):1444-8. https://doi.org/10.1126/science.abb2762 PMid:32132184 PMCid: PMC7164635
- Glowacka I, Bertram S, Müller MA, Allen P, Soilleux E, Pfefferle S, et al. Evidence that TMPRSS2 activates the Severe Acute Respiratory Syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J Virol. 2011;85(9):4122-34. https://doi.org/10.1128/JVI.02232-10 PMid:21325420 PMCid:PMC3126222
- Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271-280.e8. https://doi.org/10.1016/j.cell.2020.02.052 PMid:32142651 PMCid:PMC7102627
- Li G, Clercq ED. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Discov. 2020;19(3):149-50. https://doi.org/10.1038/d41573-020-00016-0 PMid:32127666
- Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science. 2020;368(6489):409. https://doi.org/10.1126/science.abb3405 PMid:32198291 PMCid:PMC7164518
- Astuti I, Ysrafil. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): an overview of viral structure and host response. Diabetes Metab Syndr. 2020;14(4):407-12. https://doi.org/10.1016/j.dsx.2020.04.020 PMid: 32335367 PMCid:PMC7165108
- Jensen S, Thomsen AR. Sensing of RNA viruses: a review of innate immune receptors involved in recognizing RNA virus invasion. J Virol. 2012;86(6):2900-10. https://doi.org/10.1128/JVI.05738-11 PMid:22258243 PMCid:PMC3302314
- Yi Y, Lagniton PNP, Ye S, Li E, Xu R-H. COVID-19: what has been learned and to be learned about the novel coronavirus disease. Int J Biol Sci. 2020;16(10):1753-66. https://doi.org/10.7150/ijbs.45134 PMid:32226295 PMCid: PMC7098028
- Mubarak A, Alturaiki W, Hemida MG. Middle East Respiratory Syndrome coronavirus (MERS-CoV): infection, immunological response, and vaccine development. Quinti I, editor. J Immunol Res. 2019;2019:6491738. https://doi.org/10.1155/2019/6491738 PMid:31089478 PMCid:PMC6476043
- Jamilloux Y, Henry T, Belot A, Viel S, Fauter M, El Jammal T, et al. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmun Rev. 2020;102567-102567. https://doi.org/10.1016/j.autrev.2020.102567 PMid:32376392 PMCid: PMC7196557
- Felsenstein S, Herbert JA, McNamara PS, Hedrich CM. COVID-19: Immunology and treatment options. Clin Immunol. 2020;215:108448. https://doi.org/10.1016/j.clim.2020.108448 PMid:32353634 PMCid:PMC7185015
- Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol Cell. 2002;10(2):417-26. https://doi.org/10.1016/S1097-2765(02)00599-3
- Martinon F, Tschopp J. Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death Differ. 2007;14(1):10-22. https://doi.org/10.1038/sj.cdd.4402038 PMid:16977329
- Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020;38(1):1-9.
- Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017;39(5):529-39. https://doi.org/10.1007/s00281-017-0629-x PMid:28466096 PMCid:PMC7079893
- Kindler E, Thiel V, Weber F. Chapter Seven - Interaction of SARS and MERS coronaviruses with the antiviral interferon response. In: Ziebuhr J, editor. Advances in Virus Research [Internet]. Academic Press; 2016. p. 219-43. https://doi.org/10.1016/bs.aivir.2016.08.006 PMid:27712625 PMCid:PMC7112302
- Lu X, Pan J, Tao J, Guo D. SARS-CoV nucleocapsid protein antagonizes IFN-β response by targeting initial step of IFN-β induction pathway, and its C-terminal region is critical for the antagonism. Virus Genes. 2011;42(1):37-45. https://doi.org/10.1007/s11262-010-0544-x PMid:20976535 PMCid:PMC7088804
- Totura AL, Baric RS. SARS coronavirus pathogenesis: host innate immune responses and viral antagonism of interferon. Curr Opin Virol. 2012;2(3):264-75. https://doi.org/10.1016/j.coviro.2012.04.004 PMid:22572391 PMCid:PMC7102726
- de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016;14(8):523-34. https://doi.org/10.1038/nrmicro.2016.81 PMid:27344959 PMCid: PMC7097822
- Sun L, Xing Y, Chen X, Zheng Y, Yang Y, Nichols DB, et al. Coronavirus papain-like proteases negatively regulate antiviral innate immune response through disruption of STING-mediated signaling. PloS One. 2012/02/01. 2012;7(2):e30802-e30802. https://doi.org/10.1371/journal.pone.0030802 PMid:22312431 PMCid:PMC3270028
- Frieman M, Ratia K, Johnston RE, Mesecar AD, Baric RS. Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kB signaling. J Virol. 2009/04/15. 2009;83(13):6689-705. https://doi.org/10.1128/JVI.02220-08 PMid:19369340 PMCid:PMC2698564
- Fehr AR, Athmer J, Channappanavar R, Phillips JM, Meyerholz DK, Perlman S. The nsp3 macrodomain promotes virulence in mice with coronavirus-induced encephalitis. J Virol. 2014/11/26. 2015;89(3):1523-36. https://doi.org/10.1128/JVI.02596-14 PMid:25428866 PMCid:PMC4300739
- Bouvet M, Debarnot C, Imbert I, Selisko B, Snijder EJ, Canard B, et al. In vitro reconstitution of SARS-coronavirus mRNA cap methylation. PLoS Pathog. 2010;6(4):e1000863-e1000863. https://doi.org/10.1371/journal.ppat.1000863 PMid:20421945 PMCid:PMC2858705
- Chen Y, Su C, Ke M, Jin X, Xu L, Zhang Z, et al. Biochemical and structural insights into the mechanisms of SARS coronavirus RNA ribose 2’-O-methylation by nsp16/nsp10 protein complex. PLoS Pathog. 2011/10/13. 2011;7(10):e1002294-e1002294. https://doi.org/10.1371/journal.ppat.1002294 PMid:22022266 PMCid:PMC3192843
- Chen Y, Cai H, Pan J, Xiang N, Tien P, Ahola T, et al. Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase. Proc Natl Acad Sci U S A. 2009/02/10. 2009;106(9):3484-9. https://doi.org/10.1073/pnas.0808790106 PMid:19208801 PMCid:PMC2651275
- Daffis S, Szretter KJ, Schriewer J, Li J, Youn S, Errett J, et al. 2’-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature. 2010;468(7322):452-6. https://doi.org/10.1038/nature09489 PMid:21085181 PMCid:PMC3058805
- Züst R, Cervantes-Barragan L, Habjan M, Maier R, Neuman BW, Ziebuhr J, et al. Ribose 2’-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat Immunol. 2011/01/09. 2011;12(2):137-43. https://doi.org/10.1038/ni.1979 PMid:21217758 PMCid:PMC3182538
- Siu K-L, Kok K-H, Ng M-HJ, Poon VKM, Yuen K-Y, Zheng B-J, et al. Severe acute respiratory syndrome coronavirus M protein inhibits type I interferon production by impeding the formation of TRAF3.TANK.TBK1/IKKε complex. J Biol Chem. 2009/04/20. 2009;284(24):16202-9. https://doi.org/10.1074/jbc.M109.008227 PMid:19380580 PMCid:PMC2713514
- Freundt EC, Yu L, Park E, Lenardo MJ, Xu X-N. Molecular determinants for subcellular localization of the severe acute respiratory syndrome coronavirus open reading frame 3b protein. J Virol. 2009/04/29. 2009;83(13):6631-40. https://doi.org/10.1128/JVI.00367-09 PMid:19403678 PMCid:PMC2698541
- Frieman M, Yount B, Heise M, Kopecky-Bromberg SA, Palese P, Baric RS. Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane. J Virol. 2007/06/27. 2007;81(18):9812-24. https://doi.org/10.1128/JVI.01012-07 PMid:17596301 PMCid:PMC2045396
- Harapan H, Itoh N, Yufika A, Winardi W, Keam S, Te H, et al. Coronavirus disease 2019 (COVID-19): a literature review. J Infect Public Health. 2020;13(5):667-73. https://doi.org/10.1016/j.jiph.2020.03.019 PMid:32340833 PMCid:PMC7142680
- Yoshikawa T, Hill TE, Yoshikawa N, Popov VL, Galindo CL, Garner HR, et al. Dynamic innate immune responses of human bronchial epithelial cells to severe acute respiratory syndrome-associated coronavirus infection. PloS One. 2010;5(1):e8729-e8729. https://doi.org/10.1371/journal.pone.0008729 PMid:20090954 PMCid:PMC2806919
- Chen J, Lau YF, Lamirande EW, Paddock CD, Bartlett JH, Zaki SR, et al. Cellular immune responses to severe acute respiratory syndrome coronavirus (SARS-CoV) infection in senescent BALB/c mice: CD4+ T cells are important in control of SARS-CoV infection. J Virol. 2009/11/11. 2010;84(3):1289-301. https://doi.org/10.1128/JVI.01281-09 PMid:19906920 PMCid:PMC2812346
- Yao X, Li T, He Z, Ping Y, Liu H, Yu S, et al. [A pathological report of three COVID-19 cases by minimal invasive autopsies]. Zhonghua Bing Li Xue Za Zhi. 2020;49(5):411-7.
- Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet. 2020;395(10223):507-13. https://doi.org/10.1016/S0140-6736(20)30211-7
- Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 Novel Coronavirus-infected pneumonia in Wuhan, China. JAMA-J Am Med Assoc. 2020;323(11):1061-9. https://doi.org/10.1001/jama.2020.1585 PMid:32031570 PMCid: PMC7042881
- Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L, et al. Reduction and functional exhaustion of T cells in patients with Coronavirus Disease 2019 (COVID-19). medRxiv. 2020;2020.02.18.20024364. https://doi.org/10.1101/2020.02.18.20024364
- Zheng H-Y, Zhang M, Yang C-X, Zhang N, Wang X-C, Yang X-P, et al. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell Mol Immunol. 2020;17(5):541-3. https://doi.org/10.1038/s41423-020-0401-3 PMid:32203186 PMCid:PMC7091621
- Fan Y-Y, Huang Z-T, Li L, Wu M-H, Yu T, Koup RA, et al. Characterization of SARS-CoV-specific memory T cells from recovered individuals 4 years after infection. Arch Virol. 2009;154(7):1093-9. https://doi.org/10.1007/s00705-009-0409-6 PMid:19526193 PMCid:PMC2796960
- Tang F, Quan Y, Xin Z-T, Wrammert J, Ma M-J, Lv H, et al. Lack of peripheral memory B cell responses in recovered patients with Severe Acute Respiratory Syndrome: a six-year follow-up study. J Immunol. 2011;186(12):7264-8. https://doi.org/10.4049/jimmunol.0903490 PMid:21576510
- Wang F, Nie J, Wang H, Zhao Q, Xiong Y, Deng L, et al. Characteristics of peripheral lymphocyte subset alteration in COVID-19 pneumonia. J Infect Dis. 2020;221(11):1762-9. https://doi.org/10.1093/infdis/jiaa150 PMCid:PMC4857467
- Tynell J, Westenius V, Rönkkö E, Munster VJ, Melén K, Österlund P, et al. Middle East respiratory syndrome coronavirus shows poor replication but significant induction of antiviral responses in human monocyte-derived macrophages and dendritic cells. J Gen Virol. 2015/11/24. 2016;97(2):344-55. https://doi.org/10.1099/jgv.0.000351 PMid:26602089 PMCid:PMC4804640
- Zhou J, Chu H, Li C, Wong BH-Y, Cheng Z-S, Poon VK-M, et al. Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: implications for pathogenesis. J Infect Dis. 2013/09/24. 2014;209(9):1331-42. https://doi.org/10.1093/infdis/jit504 PMid:24065148 PMCid:PMC7107356
- Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res. 2000;87(5):e1-9. https://doi.org/10.1161/01.RES.87.5.e1PMid:10969042
- Sungnak W, Huang N, Bécavin C, Berg M, Queen R, Litvinukova M, et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med. 2020;26(5):681-7. https://doi.org/10.1038/s41591-020-0868-6 PMid:32327758
- Liu Y-T, Chen H-W, Lii C-K, Jhuang J-H, Huang C-S, Li M-L, et al. A diterpenoid, 14-deoxy-11, 12-didehydroandrographolide, in andrographis paniculata reduces steatohepatitis and liver injury in mice fed a high-fat and high-cholesterol diet. Nutrients. 2020;12(2):523. https://doi.org/10.3390/nu12020523 PMid:32085637 PMCid:PMC7071475
- Liu Z, Xiao X, Wei X, Li J, Yang J, Tan H, et al. Composition and divergence of coronavirus spike proteins and host ACE2 receptors predict potential intermediate hosts of SARS-CoV-2. J Med Virol. 2020;92(6):595-601. https://doi.org/10.1002/jmv.25726 PMid:32100877 PMCid: PMC7228221
- Zhang W, Zhao Y, Zhang F, Wang Q, Li T, Liu Z, et al. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): the perspectives of clinical immunologists from China. Clin Immunol. 2020;214:108393. https://doi.org/10.1016/j.clim.2020.108393 PMid:32222466 PMCid:PMC7102614
- Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y, Zuo W. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov. bioRxiv. 2020;2020.01.26.919985. https://doi.org/10.1101/2020.01.26.919985
- Zheng Y-Y, Ma Y-T, Zhang J-Y, Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol. 2020;17(5):259-60. https://doi.org/10.1038/s41569-020-0360-5 PMid:32139904 PMCid:PMC7095524
- Xu H, Zhong L, Deng J, Peng J, Dan H, Zeng X, et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci. 2020;12(1):8. https://doi.org/10.1038/s41368-020-0074-x PMid:32094336 PMCid:PMC7039956
- Zhang H, Kang Z, Gong H, Xu D, Wang J, Li Z, et al. The digestive system is a potential route of 2019-nCov infection: a bioinformatics analysis based on single-cell transcriptomes. bioRxiv. 2020;2020.01.30.927806. https://doi.org/10.1101/2020.01.30.927806
- Haga S, Yamamoto N, Nakai-Murakami C, Osawa Y, Tokunaga K, Sata T, et al. Modulation of TNF-α-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-α production and facilitates viral entry. Proc Natl Acad Sci U S A. 2008;105(22):7809-14. https://doi.org/10.1073/pnas.0711241105 PMid:18490652 PMCid:PMC2409424
- Mehta AK, Gracias DT, Croft M. TNF activity and T cells. TNF Fam Cytokines Recent Insights Biol Ther. 2018;101:14-8. https://doi.org/10.1016/j.cyto.2016.08.003 PMid:27531077 PMCid:PMC5305780
- Cilli A, Cakin O, Aksoy E, Kargin F, Adiguzel N, Karakurt Z, et al. Acute cardiac events in severe community-acquired pneumonia: a multicenter study. Clin Respir J. 2018;12(7):2212-9. https://doi.org/10.1111/crj.12791 PMid:29570241
- Corrales-Medina Vicente F., Musher Daniel M., Wells George A., Chirinos Julio A., Chen Li, Fine Michael J. Cardiac complications in patients with community-acquired pneumonia. Circulation. 2012;125(6):773-81. https://doi.org/10.1161/CIRCULATIONAHA.111.040766 PMid:22219349
- Corrales-Medina VF, Suh KN, Rose G, Chirinos JA, Doucette S, Cameron DW, et al. Cardiac complications in patients with community-acquired pneumonia: a systematic review and meta-analysis of observational studies. PLoS Med. 2011/06/28. 2011;8(6):e1001048-e1001048. https://doi.org/10.1371/journal.pmed.1001048 PMid:21738449 PMCid:PMC3125176
- Chen T, Wu D, Chen H, Yan W, Yang D, Chen G, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. Br Med J. 2020;368:m1091. https://doi.org/10.1136/bmj.m1091 PMid:32217556 PMCid:PMC7190011
- Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5(7):802-10. https://doi.org/10.1001/jamacardio.2020.0950 PMid:32211816 PMCid:PMC7097841
- Oudit GY, Kassiri Z, Jiang C, Liu PP, Poutanen SM, Penninger JM, et al. SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur J Clin Invest. 2009;39(7):618-25. https://doi.org/10.1111/j.1365-2362.2009.02153.x PMid:19453650 PMCid:PMC7163766
- Chen L, Li X, Chen M, Feng Y, Xiong C. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc Res. 2020;116(6):1097-100. https://doi.org/10.1093/cvr/cvaa078 PMid:32227090 PMCid:PMC7184507
- Tersalvi G, Vicenzi M, Calabretta D, Biasco L, Pedrazzini G, Winterton D. Elevated troponin in patients with Coronavirus Disease 2019: possible mechanisms. J Card Fail. 2020;S1071-9164(20)30357-2.
- Patel Vaibhav B., Zhong Jiu-Chang, Grant Maria B., Oudit Gavin Y. Role of the ACE2/angiotensin 1-7 axis of the renin-angiotensin system in heart failure. Circ Res. 2016;118(8):1313-26. https://doi.org/10.1161/CIRCRESAHA.116.307708 PMid:27081112 PMCid:PMC4939482
- Guo T, Fan Y, Chen M, Wu X, Zhang L, He T, et al. Cardiovascular implications of fatal outcomes of patients with Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):1-8. https://doi.org/10.1001/jamacardio.2020.1017 PMid:32219356 PMCid:PMC7101506
- Lippi G, Lavie CJ, Sanchis-Gomar F. Cardiac troponin I in patients with coronavirus disease 2019 (COVID-19): evidence from a meta-analysis. Prog Cardiovasc Dis. 2020;S0033-0620(20)30055-4. https://doi.org/10.1016/j.pcad.2020.03.001 PMid:32169400 PMCid:PMC7127395
- Fan Z, Chen L, Li J, Cheng X, Yang J, Tian C, et al. Clinical features of COVID-19-related liver damage. Clin Gastroenterol Hepatol. 2020;18(7):1561-6. https://doi.org/10.1016/j.cgh.2020.04.002 PMid:32283325 PMCid: PMC7194865
- Li L, Li S, Xu M, Yu P, Zheng S, Duan Z, et al. Risk factors related to hepatic injury in patients with corona virus disease 2019. medRxiv. 2020;2020.02.28.20028514.
- Chau T-N, Lee K-C, Yao H, Tsang T-Y, Chow T-C, Yeung Y-C, et al. SARS-associated viral hepatitis caused by a novel coronavirus: report of three cases. Hepatology. 2004;39(2):302-10. https://doi.org/10.1002/hep.20111 PMid:14767982 PMCid:PMC7165792
- Alsaad KO, Hajeer AH, Al Balwi M, Al Moaiqel M, Al Oudah N, Al Ajlan A, et al. Histopathology of Middle East respiratory syndrome coronovirus (MERS-CoV) infection - clinicopathological and ultrastructural study. Histopathology. 2018;72(3):516-24. https://doi.org/10.1111/his.13379 PMid:28858401 PMCid:PMC7165512
- Musa S. Hepatic and gastrointestinal involvement in coronavirus disease 2019 (COVID-19): what do we know till now? Arab J Gastroenterol. 2020;21(1):3-8. https://doi.org/10.1016/j.ajg.2020.03.002 PMid:32253172 PMCid:PMC7174834
- Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708-20. https://doi.org/10.1056/NEJMoa2002032 PMid:32109013 PMCid: PMC7092819
- Chai X, Hu L, Zhang Y, Han W, Lu Z, Ke A, et al. Specific ACE2 expression in cholangiocytes may cause liver damage after 2019-nCoV infection. bioRxiv. 2020;2020.02.03.931766. https://doi.org/10.1101/2020.02.03.931766
- Zhang C, Shi L, Wang F-S. Liver injury in COVID-19: management and challenges. Lancet Gastroenterol Hepatol. 2020;5(5):428-30. https://doi.org/10.1016/S2468-1253(20)30057-1
- Strnad P, Tacke F, Koch A, Trautwein C. Liver — guardian, modifier and target of sepsis. Nat Rev Gastroenterol Hepatol. 2017;14(1):55-66. https://doi.org/10.1038/nrgastro.2016.168 PMid:27924081
- Leung WK, To K, Chan PKS, Chan HLY, Wu AKL, Lee N, et al. Enteric involvement of severe acute respiratory syndrome-associated coronavirus infection. Gastroenterology. 2003;125(4):1011-7. https://doi.org/10.1016/j.gastro.2003.08.001
- Pan L, Mu M, Yang P, Sun Y, Wang R, Yan J, et al. Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: a descriptive, cross-sectional, multicenter study. Am J Gastroenterol. 2020;115(5):766-73. https://doi.org/10.14309/ajg.0000000000000620 PMid:32287140 PMCid:PMC7172492
- Liang W, Feng Z, Rao S, Xiao C, Xue X, Lin Z, et al. Diarrhoea may be underestimated: a missing link in 2019 novel coronavirus. Gut. 2020;69(6):1141-3. https://doi.org/10.1136/gutjnl-2020-320832 PMid:32102928
- Naicker S, Yang C-W, Hwang S-J, Liu B-C, Chen J-H, Jha V. The Novel Coronavirus 2019 epidemic and kidneys. Kidney Int. 2020/03/07. 2020;97(5):824-8. https://doi.org/10.1016/j.kint.2020.03.001 PMid:32204907 PMCid: PMC7133222
- Cheng Y, Luo R, Wang K, Zhang M, Wang Z, Dong L, et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020/03/20. 2020;97(5):829-38. https://doi.org/10.1016/j.kint.2020.03.005 PMid:32247631 PMCid:PMC7110296
- Li Z, Wu M, Yao J, Guo J, Liao X, Song S, et al. Caution on kidney dysfunctions of COVID-19 patients. medRxiv. 2020; Available at: http://europepmc.org/abstract/PPR/PPR112604
- Wang Y, Zhang S, Wei Q, Zhao M, Mei H, Zhang Z, et al. COVID-19 complicated with DIC: 2 cases report and literatures review. Zhonghua Xue Ye Xue Za Zhi. 2020;41(3):245-7.
- Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4):844-7. https://doi.org/10.1111/jth.14768 PMid: 32073213 PMCid:PMC7166509
- Subramaniam S, Scharrer I. Procoagulant activity during viral infections. Front Biosci Landmark Ed. 2018;23:1060-81. https://doi.org/10.2741/4633 PMid:28930589
- Lippi G, Plebani M, Henry BM. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: a meta-analysis. Clin Chim Acta. 2020;506:145-8. https://doi.org/10.1016/j.cca.2020.03.022 PMid:32178975 PMCid:PMC7102663
- Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020;18(5):1094-9. https://doi.org/10.1111/jth.14817 PMid:32220112
- Kim J-E, Heo J-H, Kim H, Song S, Park S-S, Park T-H, et al. Neurological complications during treatment of Middle East Respiratory Syndrome. J Clin Neurol. 2017;13(3):227-33. https://doi.org/10.3988/jcn.2017.13.3.227 PMid: 28748673 PMCid:PMC5532318
- Tsai L-K, Hsieh S-T, Chao C-C, Chen Y-C, Lin Y-H, Chang S-C, et al. Neuromuscular disorders in Severe Acute Respiratory Syndrome. Arch Neurol. 2004;61(11):1669-73. https://doi.org/10.1001/archneur.61.11.1669 PMid:15534177
- Chao CC, Tsai LK, Chiou YH, Tseng MT, Hsieh ST, Chang SC, et al. Peripheral nerve disease in SARS: report of a case. Neurology. 2003;61(12):1820-1. https://doi.org/10.1212/01.WNL.0000099171.26943.D0 PMid:14694063
- Algahtani H, Subahi A, Shirah B. Neurological complications of Middle East Respiratory syndrome coronavirus: a report of two cases and review of the literature. Simone IL, editor. Case Rep Neurol Med. 2016;2016:3502683. https://doi.org/10.1155/2016/3502683 PMid:27239356 PMCid:PMC4864560
- Arabi YM, Harthi A, Hussein J, Bouchama A, Johani S, Hajeer AH, et al. Severe neurologic syndrome associated with Middle East respiratory syndrome corona virus (MERS-CoV). Infection. 2015;43(4):495-501. https://doi.org/10.1007/s15010-015-0720-y PMid:25600929 PMCid:PMC4521086
- Ahmad I, Rathore FA. Neurological manifestations and complications of COVID-19: a literature review. J Clin Neurosci. 2020;77:8-12. https://doi.org/10.1016/j.jocn.2020.05.017 PMid:32409215 PMCid:PMC7200361
- Xia H, Lazartigues E. Angiotensin-converting enzyme 2 in the brain: properties and future directions. J Neurochem. 2008/11/05. 2008;107(6):1482-94. https://doi.org/10.1111/j.1471-4159.2008.05723.x PMid:19014390 PMCid: PMC2667944
- Dubé M, Le Coupanec A, Wong AHM, Rini JM, Desforges M, Talbot PJ. Axonal transport enables neuron-to-neuron propagation of human coronavirus OC43. J Virol. 2018;92(17):e00404-18. https://doi.org/10.1128/JVI.00404-18 PMid:29925652 PMCid:PMC6096804
- Hamming I, Timens W, Bulthuis M, Lely A, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631-7. https://doi.org/10.1002/path.1570 PMid:15141377 PMCid:PMC7167720
- Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci. 2020;11(7):995-8. https://doi.org/10.1021/acschemneuro.0c00122 PMid:32167747 PMCid: PMC7094171
- Desforges M, Le Coupanec A, Dubeau P, Bourgouin A, Lajoie L, Dubé M, et al. Human coronaviruses and other respiratory viruses: underestimated opportunistic pathogens of the central nervous system? Viruses. 2020;12(1):1-28. https://doi.org/10.3390/v12010014 PMid:31861926 PMCid:PMC7020001
- Tu H, Tu S, Gao S, Shao A, Sheng J. Current epidemiological and clinical features of COVID-19; a global perspective from China. J Infect. 2020;S0163-4453(20)30222-X.
- Zhao H, Shen D, Zhou H, Liu J, Chen S. Guillain-Barré syndrome associated with SARS-CoV-2 infection: causality or coincidence? Lancet Neurol. 2020;19(5):383-4. https://doi.org/10.1016/S1474-4422(20)30109-5
- Moriguchi T, Harii N, Goto J, Harada D, Sugawara H, Takamino J, et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int J Infect Dis. 2020;94:55-8. https://doi.org/10.1016/j.ijid.2020.03.062 PMid:32251791 PMCid:PMC7195378
- Zhao K, Huang J, Dai D, Feng Y, Liu L, Nie S. Acute myelitis after SARS-CoV-2 infection: a case report. medRxiv. 2020;2020.03.16.20035105. https://doi.org/10.1101/2020.03.16.20035105
- Sedaghat Z, Karimi N. Guillain Barre syndrome associated with COVID-19 infection: a case report. J Clin Neurosci. 2020;76:233-5. https://doi.org/10.1016/j.jocn.2020.04.062 PMid:32312628 PMCid:PMC7158817
- Toscano G, Palmerini F, Ravaglia S, Ruiz L, Invernizzi P, Cuzzoni MG, et al. Guillain-Barré Syndrome Associated with SARS-CoV-2. N Engl J Med. 2020;382:2574-6. https://doi.org/10.1056/NEJMc2009191 PMid:32302082 PMCid:PMC7182017
- Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. Neurologic manifestations of hospitalized patients with Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020;77(6):683-90. https://doi.org/10.1001/jamaneurol.2020.1127 PMid:32275288 PMCid:PMC7149362
- Deng Y, Liu W, Liu K, Fang Y-Y, Shang J, Zhou L, et al. Clinical characteristics of fatal and recovered cases of coronavirus disease 2019 (COVID-19) in Wuhan, China: a retrospective study. Chin Med J (Engl). 2020;133(11):1261-7. https://doi.org/10.1097/CM9.0000000000000824 PMid: 32209890 PMCid:PMC7289311
- Li L, Huang T, Wang Y, Wang Z, Liang Y, Huang T, et al. COVID-19 patients’ clinical characteristics, discharge rate, and fatality rate of meta-analysis. J Med Virol. 2020;92(6):577-83. https://doi.org/10.1002/jmv.25757 PMid:32162702 PMCid:PMC7228329
- Filatov A, Sharma P, Hindi F, Espinosa PS. Neurological complications of Coronavirus Disease (COVID-19): encephalopathy. Cureus. 2020;12(3):e7352-e7352. https://doi.org/10.7759/cureus.7352
- Okediji PT, Ojo AS, Akin-Onitolo AP. A review of the extrapulmonary manifestations of the 2019 novel coronavirus disease (COVID-19). J Contemp Stud Epidemiol Public Health. 2020 Aug 30;1(2):ep20008. https://doi.org/10.30935/jconseph/8499
- Long NN, Khoi BH. An empirical study about the intention to hoard food during COVID-19 pandemic. Eurasia J Math Sci Technol Educ. 2020 Apr 24;16(7):em1857. https://doi.org/10.29333/ejmste/8207
- Lounis M. Promoting school health education: A lesson from the COVID-19 pandemic. Contemp Math Sci Educ. 2020 Oct 7;1(2):ep20009. https://doi.org/10.30935/conmaths/8579
- Sine H. Anxiety, depression and sleep disorders during coronavirus disease: A systematic review. Eur J Basic Med Sci. 2020 Oct 31;10(1):11-26.
- Demuyakor J. Coronavirus (COVID-19) and online learning in higher institutions of education: A survey of the perceptions of Ghanaian international students in China. Online J Commun Media Technol. 2020 May 19;10(3):e202018. https://doi.org/10.29333/ojcmt/8286
- Malkawi E, Bawaneh AK, Bawa’aneh MS. Campus off, education on: UAEU students’ satisfaction and attitudes towards e-Learning and virtual classes during COVID-19 pandemic. Contemp Educ Technol. 2020 Oct 14;13(1):ep283. https://doi.org/10.30935/cedtech/8708
How to cite this article
Vancouver
Teodorescu M. An Overview of a Year with COVID-19: What We Know?. ELECTRON J GEN MED. 2021;18(3):em286. https://doi.org/10.29333/ejgm/9765
APA
Teodorescu, M. (2021). An Overview of a Year with COVID-19: What We Know?. Electronic Journal of General Medicine, 18(3), em286. https://doi.org/10.29333/ejgm/9765
AMA
Teodorescu M. An Overview of a Year with COVID-19: What We Know?. ELECTRON J GEN MED. 2021;18(3), em286. https://doi.org/10.29333/ejgm/9765
Chicago
Teodorescu, Mirela. "An Overview of a Year with COVID-19: What We Know?". Electronic Journal of General Medicine 2021 18 no. 3 (2021): em286. https://doi.org/10.29333/ejgm/9765
Harvard
Teodorescu, M. (2021). An Overview of a Year with COVID-19: What We Know?. Electronic Journal of General Medicine, 18(3), em286. https://doi.org/10.29333/ejgm/9765
MLA
Teodorescu, Mirela "An Overview of a Year with COVID-19: What We Know?". Electronic Journal of General Medicine, vol. 18, no. 3, 2021, em286. https://doi.org/10.29333/ejgm/9765